skip to main content


Search for: All records

Creators/Authors contains: "Li, Nancy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Earth-abundant oxygen evolution catalysts (OECs) with extended stability in acid can be constructed by embedding active sites within an acid-stable metal-oxide framework. Here, we report stable NiPbOxfilms that are able to perform oxygen evolution reaction (OER) catalysis for extended periods of operation (>20 h) in acidic solutions of pH 2.5; conversely, native NiOxcatalyst films dissolve immediately. In situ X-ray absorption spectroscopy and ex situ X-ray photoelectron spectroscopy reveal that PbO2is unperturbed after addition of Ni and/or Fe into the lattice, which serves as an acid-stable, conductive framework for embedded OER active centers. The ability to perform OER in acid allows the mechanism of Fe doping on Ni catalysts to be further probed. Catalyst activity with Fe doping of oxidic Ni OEC under acid conditions, as compared to neutral or basic conditions, supports the contention that role of Fe3+in enhancing catalytic activity in Ni oxide catalysts arises from its Lewis acid properties.

     
    more » « less
  2. Despite the advantages of membrane processes, their high energy requirement remains a major challenge. Fabrication of nanocomposite membranes by incorporating various nanomaterials in the polymer matrix has shown promise for enhancing membrane flux. In this study, we embed functionalized cellulose nanofibers (CNFs) with high aspect ratios in the polymer matrix to create hydrophilic nanochannels that reduce membrane resistance and facilitate the facile transport of water molecules through the membrane. The results showed that the incorporation of 0.1 wt % CNF into the polymer matrix did not change the membrane flux (~15 L · m − 2 · h − 1 ) and Bovine Serum Albumin (BSA) Fraction V rejection, while increasing the CNF content to 0.3 wt % significantly enhanced the flux by seven times to ~100 L · m − 2 · h − 1 , but the rejection was decreased to 60–70%. Such a change in membrane performance was due to the formation of hydrophilic nanochannels by the incorporation of CNF (corroborated by the SEM images), decreasing the membrane resistance, and thus enhancing the flux. When the concentration of the CNF in the membrane matrix was further increased to 0.6 wt %, no further increase in the membrane flux was observed, however, the BSA rejection was found to increase to 85%. Such an increase in the rejection was related to the electrostatic repulsion between the negatively-charged CNF-loaded nanochannels and the BSA, as demonstrated by zeta potential measurements. SEM images showed the bridging effect of the CNF in the nanochannels with high CNF contents. 
    more » « less
  3. Human-centered design (HCD) offers a systematic approach to innovation practice, driven by customer research and feedback throughout the design process. Within the community of engineers and researchers who engage in design for global development, interest in HCD has grown in the past decade. In this paper, we examine the human-centered design for development (HCD+D) academic community to better understand the interactions between researchers. By building and evaluating a co-authorship network from a dataset of HCD+D papers, in which the nodes are researchers and the connecting links are co-authorship relationships, we provide a decade-long benchmark to answer a variety of questions about collaboration patterns within this emerging field. Our analysis shows that most HCD+D authors publish few papers and are part of small, well-connected sub-communities. Influential authors that bridge separate communities are few. HCD+D is emerging from disparate disciplines and widely shared scholarship across disciplines continues to be developed. Influential authors in HCD+D play a large role in shaping HCD+D, yet there are few authors that are in a position to connect and influence collaborative research. Our analysis gives rise to several implications including an increased need for cross-disciplinary collaboration and the need for a stronger core of HCD+D practitioners. 
    more » « less